Mepanipyrim, a novel inhibitor of pharmacologically induced Golgi dispersion.

نویسندگان

  • Michiko Nakamura
  • Yoshiki Kono
  • Akira Takatsuki
چکیده

Mepanipyrim inhibited retrograde Golgi-to-ER trafficking induced by brefeldin A (BFA), nordihydroguaiaretic acid, clofibrate, and arachidonyltrifluoromethyl ketone in NRK and other types of cells, but did not inhibit anterograde trafficking of Golgi-resident proteins translocated to ER by BFA and newly synthesized VSV-G. However, mepanipyrim did not block the TGN38 dispersion induced by any of these compounds. Mepanipyrim acted on the Golgi, and swollen vesicular Golgi structures were formed and similar structures accumulated during rebuilding of the Golgi after BFA removal. These actions of mepanipyrim were readily reversed after its removal. Mepanipyrim did not stabilize microtubules, but prevented nocodazole-induced fragmentation and dispersion of the Golgi. These results suggest that the mepanipyrim-sensitive molecules participated in stabilizing the Golgi and its anchoring in the perinuclear region, and equally importantly, that the novel action of mepanipyrim may be used as a pharmacological tool for investigating membrane transport, Golgi membrane dynamics, and differentiation of the Golgi from TGN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex.

Cells infected with poliovirus exhibit a rapid inhibition of protein secretion and disruption of the Golgi complex. Neither the precise step at which the virus inhibits protein secretion nor the fate of the Golgi complex during infection has been determined. We find that transport-vesicle exit from the endoplasmic reticulum (ER) and trafficking to the ER-Golgi intermediate compartment (ERGIC) a...

متن کامل

Involvement of the Rho–mDia1 pathway in the regulation of Golgi complex architecture and dynamics

In mammalian cells, the Golgi apparatus is a ribbon-like, compact structure composed of multiple membrane stacks connected by tubular bridges. Microtubules are known to be important to Golgi integrity, but the role of the actin cytoskeleton in the maintenance of Golgi architecture remains unclear. Here we show that an increase in Rho activity, either by treatment of cells with lysophosphatidic ...

متن کامل

Mepanipyrim haptens and antibodies with nanomolar affinity.

Mepanipyrim is an anilinopyrimidine fungicide used worldwide for crop protection. With the aim of developing useful immunoreagents for mepanipyrim immunoanalysis, two new functionalized derivatives were prepared and antibodies were generated. Affinity and specificity were assessed by direct and indirect competitive ELISA using homologous and heterologous conjugates. Although all antibodies were...

متن کامل

AMF-26, a Novel Inhibitor of the Golgi System, Targeting ADP-ribosylation Factor 1 (Arf1) with Potential for Cancer Therapy*

ADP-ribosylation factor 1 (Arf1) plays a major role in mediating vesicular transport. Brefeldin A (BFA), a known inhibitor of the Arf1-guanine nucleotide exchange factor (GEF) interaction, is highly cytotoxic. Therefore, interaction of Arf1 with ArfGEF is an attractive target for cancer treatment. However, BFA and its derivatives have not progressed beyond the pre-clinical stage of drug develop...

متن کامل

Really interesting new gene finger protein 121 is a novel Golgi-localized membrane protein that regulates apoptosis.

Really interesting new gene (RING) finger proteins represent a large protein family in the human genome, and play crucial roles in physiological activities and cancer development. The biological functions of some RING finger proteins remain unknown. Here, we described the biological activity of a novel, human Golgi-localized RING finger protein 121 (RNF121), the function of which is, thus far, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 2003